If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10X+20=180
We move all terms to the left:
X^2-10X+20-(180)=0
We add all the numbers together, and all the variables
X^2-10X-160=0
a = 1; b = -10; c = -160;
Δ = b2-4ac
Δ = -102-4·1·(-160)
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{185}}{2*1}=\frac{10-2\sqrt{185}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{185}}{2*1}=\frac{10+2\sqrt{185}}{2} $
| 4(7.50+2)+7.50x=83 | | 10-3y=5+2y | | 5x-2x+8x=0 | | 4-6.75b=37.00 | | -1/2+1/3a=1/8 | | 23n=32 | | 3.75x=4.5 | | 50+x+39=180 | | 36x+20+3x=180 | | 36(x)+20)3x)=180 | | (x-4)^(2)=121 | | 13x+2x+10=-2+3(5x+4) | | -3x+3(5x+2)=2x+10x+9 | | 10x+20=10x+4 | | 3x+5x+6=2(4x+3) | | 3^x=-0.6 | | 3d+5(d=2) | | 9v+64=17v | | 82=4-6/7x | | 4-6x+5=x-5 | | 5+2(3x-5)=2x+11 | | -5+2x+-3x=x-8 | | 5/x+40=95 | | 50+5y+19=180 | | 6*x-10=32 | | 2x+3+x-5+5x-30=360 | | 5(x+6)=-6+x | | 3(x-3x)=2(x+3)-30 | | 6u-15=3(u-6) | | 2x+3-x-5-5x-20=360 | | -2=8(w+6)-3w | | 108=9(2p+6) |